Rescue of Progeria in Trichothiodystrophy by Homozygous Lethal Xpd Alleles
نویسندگان
چکیده
Although compound heterozygosity, or the presence of two different mutant alleles of the same gene, is common in human recessive disease, its potential to impact disease outcome has not been well documented. This is most likely because of the inherent difficulty in distinguishing specific biallelic effects from differences in environment or genetic background. We addressed the potential of different recessive alleles to contribute to the enigmatic pleiotropy associated with XPD recessive disorders in compound heterozygous mouse models. Alterations in this essential helicase, with functions in both DNA repair and basal transcription, result in diverse pathologies ranging from elevated UV sensitivity and cancer predisposition to accelerated segmental progeria. We report a variety of biallelic effects on organismal phenotype attributable to combinations of recessive Xpd alleles, including the following: (i) the ability of homozygous lethal Xpd alleles to ameliorate a variety of disease symptoms when their essential basal transcription function is supplied by a different disease-causing allele, (ii) differential developmental and tissue-specific functions of distinct Xpd allele products, and (iii) interallelic complementation, a phenomenon rarely reported at clinically relevant loci in mammals. Our data suggest a re-evaluation of the contribution of "null" alleles to XPD disorders and highlight the potential of combinations of recessive alleles to affect both normal and pathological phenotypic plasticity in mammals.
منابع مشابه
Disruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality.
The xeroderma pigmentosum (XP) group D (XPD) gene encodes a DNA helicase that is a subunit of the transcription factor IIH complex, involved both in nucleotide excision repair of UV-induced DNA damage and in basal transcription initiation. Point mutations in the XPD gene lead either to the cancer-prone repair syndrome XP, sometimes in combination with a second repair condition; Cockayne syndrom...
متن کاملA Drosophila XPD model links cell cycle coordination with neuro-development and suggests links to cancer
XPD functions in transcription, DNA repair and in cell cycle control. Mutations in human XPD (also known as ERCC2) mainly cause three clinical phenotypes: xeroderma pigmentosum (XP), Cockayne syndrome (XP/CS) and trichothiodystrophy (TTD), and only XP patients have a high predisposition to developing cancer. Hence, we developed a fly model to obtain novel insights into the defects caused by ind...
متن کاملp8/TTDA Overexpression Enhances UV-Irradiation Resistance and Suppresses TFIIH Mutations in a Drosophila Trichothiodystrophy Model
Mutations in certain subunits of the DNA repair/transcription factor complex TFIIH are linked to the human syndromes xeroderma pigmentosum (XP), Cockayne's syndrome (CS), and trichothiodystrophy (TTD). One of these subunits, p8/TTDA, interacts with p52 and XPD and is important in maintaining TFIIH stability. Drosophila mutants in the p52 (Dmp52) subunit exhibit phenotypic defects similar to tho...
متن کاملRecovery of normal DNA repair and mutagenesis in trichothiodystrophy cells after transduction of the XPD human gene.
To determine whether expression of the XPD/ERCC2 repair gene in trichothiodystrophy (TTD) group D cells could restore mutagenesis characteristics of repair-proficient cells, we compared the UV mutagenesis of normal cells, TTD group D cells, and TTD group D cells retrovirally transduced by the wild-type XPD/ERCC2 gene (TTD + ERCC2 cells). We first verified the expression of the XPD protein, corr...
متن کاملIn TFIIH, XPD Helicase Is Exclusively Devoted to DNA Repair
The eukaryotic XPD helicase is an essential subunit of TFIIH involved in both transcription and nucleotide excision repair (NER). Mutations in human XPD are associated with several inherited diseases such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. We performed a comparative analysis of XPD from Homo sapiens and Chaetomium thermophilum (a closely related thermostable f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 4 شماره
صفحات -
تاریخ انتشار 2006